群馬大学大学院理工学府

電気電子工学分野

URL: http://www.el.gunma-u.ac.ip/~kobaweb/

- ■研究テーマ
- ●アナログ集積回路設計、信号処理

AD/DA変換器、信号処理、電子計測、電源回路、アンプ、フィルタ、高周波回路

■産業界の相談に対応できる技術分野

アナログ、デジタル回路設計、信号処理 (小林春夫教授 招聘客員教授、高井伸和准教授 石川信宣技術専門職員で対応)

■主た設備

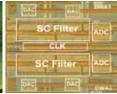
時間領域および周波数領域電子計測器、回路設計シミュレータ

小林春夫 教授

連絡 先 電子情報部門 小林春夫 TEL 0277-30-1788 FAX 0277-30-1707 e-mailk_haruo@el.gunma-u.ac.jp

研究概要

回路、システム設計の体系化を目指して


「国の盛衰はエレクトロニクス技術にあり」

本研究室では、長期的・世界的に半導体・ エレクトロニクスの技術・産業は成長してきて おり基幹技術・産業であると認識し、集積回 路設計(トランジスタレベルからシステム・レベ ルまで)の研究教育を行っています。その中で とくに材料、デバイス分野とソフトウェアの間を 結ぶ分野の位置づけの回路・システム設計の 分野に注力しています。産業界で重要である にもかかわらず学問的な体系化が十分では なく、大学での研究室も少ない分野です。これ まで取り組んできた研究テーマは以下のよう になります。

- (1) 波形サンプリング・システム
- a) クロック・ジッタのオンチップ測定回路
- b) サンプリング回路における有限アパーチャ 時間の影響の解析
- (2) アナログ・デジタル変換器 (ADC)
- a) 逐次比較ADC (図1 左)
- b) パイプラインADC, サイクリックADC
- c) 折り返し補間型ADC
- d) インターリーブADCのチャネル間ミスマッ チの影響の解析/補正アルゴリズム
- f) ΔΣADC (図1 右)

- (3) デジタル・アナログ変換器 (DAC)
- a) ΔΣDAC
- b) DAC非線形性の補正技術
- (4) 時間デジタイザ回路(TDC)
- (5)電源回路
- a) チャージポンプ回路(図2)
- b) スイッチング電源回路 (単一インダクタ 多出力DC-DC変換器,AC-DC 変換器, EMI拡散技術)
- (6) 高周波回路
- a) 完全デジタルPLL回路(図3)
- b) RF ADC(連続時間BP ΔΣADC)
- c) RCポリフェーズ・フィルタの設計・解析
- d) 低ノイズアンプ(LNA), 分周器
- e) 基地局パワーアンプ 包絡線追跡電源回路
- (7) LSI テスト技術, 電子計測技術の研究
- a) ADC評価アルゴリズム
- b) ADC評価用低歪信号発生技術
- c) アナログBIST, DFT, BOST
- d) ひずみセンサ回路

半導体理丁学研究センターと共同開発したADCチップ写 真。(左) 逐次比較近似ADC。(右) 複素/ シドパスΔΣAD変調器。

図2 三洋電機と共同開発したチャージポンプ電源回路

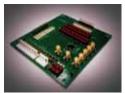


図3 三洋半導体と開発した完全デジタルPLL-TV チューナ LSIを実装した評価基板。0.18µm CMOS プロセスで設計試 作したLSIをワイヤボンディングで評価基板と直接接続し、多数 の制御信号ピンやスイッチを基板上に実装することで、より高度 な測定評価を可能とした。TV チューナ用完全デジタルPLL LSI の開発は世界初。

「回路技術研究の2つのありかた」 (1)設計・試作・実測による検証

ガリレオ・ガリレイが示したように、物理系 分野の科学技術研究の進め方は、実験・実測 に基づくべきです。したがって回路・システム 設計分野の研究では新しいコンセプトを考 案・提案し実際に回路を設計・試作・実測に よって検証すべきです。

(2)普遍的な回路設計論・アルゴリズムの構築

新しいコンセプトを集積回路で実証するた めには、時間・スキル・予算が必要であり、デ バイステクノロジーが進むとその結果(性能) は最先端レベルから陳腐化してしまいます。 一方ピタゴラスの定理は永遠に真理です。プ ラトンが幾何学を重要視したように、普遍的 な回路システム設計論・アルゴリズムの構築 の研究は重要と思います。

特徴と強み

豊富な人材、産業界ニーズ志向の柔軟な研究

「人は城、人は石垣、人は堀」

様々なバックグラントを持った多様な人材 が研究室の特長です。専任教職員人ともバッ クグランドが異なります。高井准教授は、アン プ、アナログフィルタ、アナログ回路自動設計 に強みを持っています。石川技術専門職員は

電波・通信工学に強みを持っています。電源 回路、ミクストシグナル集積回路、デバイスモ デリング、LSIテスト分野、信号処理分野で産 業界から何人もの客員教授の先生を招聘し ています。

筆者(小林)はADC, 信号処理, 計測制御に 強みを持っていると思っています。信号処理 でデジタル・アシスト・アナログ技術、計測 制御でアナログテスト容易化技術に力点を 置いています。

現在研究室には留学生は15名程度おり、日 本学生でも何名かは群馬大学外からも大学 院に入学しており、また女子学生も何名かお ります。研究室の学部4年生のほとんどはその まま大学院博士前期課程(修士課程)に進学 しています。研究室全体で教職員・学生合わ せて40名程度、招聘客員教授も7-8名と 「電気電子離れ」など全く感じさせない活況を 示しています。

「兵の形は水に象(かたど)る」

当研究室では産業界との共同研究を積極 的に推進してきています。産業界のニーズを 反映し、産業界より先端技術情報の提供を得 ながら、自分たちの得意な技術を用いて産業 界および学界に貢献する研究成果をだして いく、という「ニーズ志向」の研究が多いです。 幅広い分野に対して柔軟に研究成果を出す ことができる、幅広い新技術を研究室に導入 できると思っております。

今後の展開

世界を目指す、世界と競争する。

「着眼大局、着手小局」

集積回路分野で世界と競争して勝てる成果 をあげることを目標としています。研究成果は 学会発表、論文、特許等で公開・発信してきて おり、これまで以上に産業界との連携を積極 的に行っていくつもりです。また、国際交流(留 学生の受け入れ、国際学会発表、海外派遣、海 外機関との連携等)も推進していきます。

半導体・エレクトロニクス技術は環境問題 でのキー技術でもあり、世界的にますます重 要になってきています。当研究室は、打順が下 位であってもレギュラーメンバーの地位を確 保して試合に出場し、地方大学の一研究室と して一定の社会的役割を果たして行きたいと 思っております。